Measure Order of Convergence without an Exact Solution, Euler Vs Milstein Scheme
نویسندگان
چکیده
The purpose of this paper is to measure the strong and weak order of convergence of both the Euler and Milstein schemes using a stochastic volatility model and an N−dimensional Exponential Brownian Motion Process (EBM). An exact solution is normally required to calculate the order of convergence, however there are none available for this volatility process. We propose a method to solve this problem. We also show numerically that when we apply the Milstein scheme to an N−dimensional stochastic process, there is a need to take into account the correlation between the systems. AMS Subject Classification: 60H10, 91B70, 62P05
منابع مشابه
Pricing exotic options using improved strong convergence
Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. With this aim in mind, the material in the thesis is divided into two main categories, stochastic calculus and mathematical finance. In the former, we introduce a new scheme or discrete time approximation based on an idea of Paul Malliavin wh...
متن کاملStochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes
Abstract. This paper focuses on two variants of the Milstein scheme, namely the split-step backward Milstein method and a newly proposed projected Milstein scheme, applied to stochastic differential equations which satisfy a global monotonicity condition. In particular, our assumptions include equations with super-linearly growing drift and diffusion coefficient functions and we show that both ...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملThe Milstein Scheme for Stochastic Delay Differential Equations without Anticipative Calculus
The Milstein scheme is the simplest nontrivial numerical scheme for stochastic differential equations with a strong order of convergence one. The scheme has been extended to the stochastic delay differential equations but the analysis of the convergence is technically complicated due to anticipative integrals in the remainder terms. This paper employs an elementary method to derive the Milstein...
متن کاملDiscrete-time Approximations of Stochastic Delay Equations: the Milstein Scheme By
In this paper, we develop a strong Milstein approximation scheme for solving stochastic delay differential equations (SDDEs). The scheme has convergence order 1. In order to establish the scheme, we prove an infinitedimensional Itô formula for “tame” functions acting on the segment process of the solution of an SDDE. It is interesting to note that the presence of the memory in the SDDE requires...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005